jueves, junio 28, 2007

ESO 27/07 - Free from the Atmosphere.

ESO 27/07 - Free from the Atmosphere.
ESO 25/07 - Chronicle of a Death Foretold


ESO 25/07 - Science Release

31 May 2007
For Immediate Release

Chronicle of a Death Foretold

Two of the World's Largest Interferometric Facilities Team-up to Study a Red Giant Star

Using ESO's VLTI on Cerro Paranal and the VLBA facility operated by NRAO, an international team of astronomers has made what is arguably the most detailed study of the environment of a pulsating red giant star. They performed, for the first time, a series of coordinated observations of three separate layers within the star's tenuous outer envelope: the molecular shell, the dust shell, and the maser shell, leading to significant progress in our understanding of the mechanism of how, before dying, evolved stars lose mass and return it to the interstellar medium.

S Orionis (S Ori) belongs to the class of Mira-type variable stars. It is a solar-mass star that, as will be the fate of our Sun in 5 billion years, is nearing its gloomy end as a white dwarf. Mira stars are very large and lose huge amounts of matter. Every year, S Ori ejects as much as the equivalent of Earth's mass into the cosmos.

ESO PR Photo 25a/07
ESO PR Photo 25a/07

Evolution of the Mira-type
Star S Orionis

" Because we are all stardust, studying the phases in the life of a star when processed matter is sent back to the interstellar medium to be used for the next generation of stars, planets... and humans, is very important, " said Markus Wittkowski, lead author of the paper reporting the results. A star such as the Sun will lose between a third and half of its mass during the Mira phase.

S Ori pulsates with a period of 420 days. In the course of its cycle, it changes its brightness by a factor of the order of 500, while its diameter varies by about 20%.

Although such stars are enormous - they are typically larger than the current Sun by a factor of a few hundred, i.e. they encompass the orbit of the Earth around the Sun - they are also distant and to peer into their deep envelopes requires very high resolution. This can only be achieved with interferometric techniques.

ESO PR Photo 25b/07
ESO PR Photo 25b/07

Structure of S Ori
(Artist's Impression)

" Astronomers are like medical doctors, who use various instruments to examine different parts of the human body," said co-author David Boboltz. " While the mouth can be checked with a simple light, a stethoscope is required to listen to the heart beat. Similarly the heart of the star can be observed in the optical, the molecular and dust layers can be studied in the infrared and the maser emission can be probed with radio instruments. Only the combination of the three gives us a more complete picture of the star and its envelope. "

The maser emission comes from silicon monoxide (SiO) molecules and can be used to image and track the motion of gas clouds in the stellar envelope roughly 10 times the size of the Sun.

The astronomers observed S Ori with two of the largest interferometric facilities available: the ESO Very Large Telescope Interferometer (VLTI) at Paranal, observing in the near- and mid-infrared, and the NRAO-operated Very Long Baseline Array (VLBA), that takes measurements in the radio wave domain.

Because the star's luminosity changes periodically, the astronomers observed it simultaneously with both instruments, at several different epochs. The first epoch occurred close to the stellar minimum luminosity and the last just after the maximum on the next cycle.

ESO PR Photo 25c/07
ESO PR Photo 25c/07

S Ori to Scale
(Artist's Impression)

The astronomers found the star's diameter to vary between 7.9 milliarcseconds and 9.7 milliarcseconds. At the distance of S Ori, this corresponds to a change of the radius from about 1.9 to 2.3 times the distance between the Earth and the Sun, or between 400 and 500 solar radii!

As if such sizes were not enough, the inner dust shell is found to be about twice as big. The maser spots, which also form at about twice the radius of the star, show the typical structure of partial to full rings with a clumpy distribution. Their velocities indicate that the gas is expanding radially, moving away at a speed of about 10 km/s.

The multi-wavelength analysis indicates that near the minimum there is more dust production and mass ejection: in these phases indeed the amount of dust is significantly higher than in the others. After this intense matter production and ejection the star continues its pulsation and when it reaches the maximum luminosity, it displays a much more expanded dust shell. This clearly supports a strong connection between the Mira pulsation and the dust production and expulsion.

Furthermore, the astronomers found that grains of aluminum oxide - also called corundum - constitute most of S Ori's dust shell: the grain size is estimated to be of the order of 10 millionths of a centimetre, that is one thousand times smaller than the diameter of a human hair.

" We know one chapter of the secret life of a Mira star, but much more can be learned in the near future, when we add near-infrared interferometry with the AMBER instrument on the VLTI to our (already broad) observational approach, " said Wittkowski.

More Information

The research presented here is reported in a paper in press in the journal Astronomy and Astrophysics ("The Mira variable S Ori: Relationships between the photosphere, molecular layer, dust shell, and SiO maser shell at 4 epochs", by M. Wittkowski et al.). It is available in PDF format from the publisher's web site.
The team consists of Markus Wittkowski (ESO), David A. Boboltz (U.S. Naval Observatory, USA), Keiichi Ohnaka and Thomas Driebe (MPIfR Bonn, Germany), and Michael Scholz (University of Heidelberg, Germany and University of Sydney, Australia).

Notes

A maser is the microwave equivalent to a laser, which emits visible light. A maser emits powerful microwave radiation instead and its study requires radio telescopes. An astrophysical maser is a naturally occurring source of stimulated emission that may arise in molecular clouds, comets, planetary atmospheres, stellar atmospheres, or from various conditions in interstellar space.
ESO operates the Very Large Telescope Interferometer at Paranal Observatory, Chile, with four fixed 8.2-m telescopes and four relocatable 1.8-m telescopes, working at optical/infrared wavelengths. NRAO operates the Very Long Baseline Array with 10 stations across the U.S. working at radio wavelengths between 3 mm and 90 cm (0.3-90 GHz). ESO, NRAO and other partners will operate the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, working at millimetre wavelengths between 0.3 and 10 mm (30-950 GHz).


Contacts

Markus Wittkowski
ESO
Phone: +49 89 3200 6769
Email: mwittkow (at) eso.org

David A. Boboltz
U.S. Naval Observatory, USA
Phone: +1 202 762 1488
Email: dboboltz (at) usno.navy.mil


National contacts for the media:
Belgium - Dr. Rodrigo Alvarez +32-2-474 70 50 rodrigo.alvarez@oma.be
Czech Republic - Pavel Suchan +420 267 103 040 suchan@astro.cz
Finland - Ms. Tiina Raivo +358 9 7748 8369 tiina.raivo@aka.fi
Denmark - Dr. Michael Linden-Vørnle +45-33-18 19 97 mykal@tycho.dk
France - Dr. Daniel Kunth +33-1-44 32 80 85 kunth@iap.fr
Germany - Dr. Jakob Staude +49-6221-528229 staude@mpia.de
Italy - Dr. Leopoldo Benacchio +39-347-230 26 51 benacchio@inaf.it
The Netherlands - Ms. Marieke Baan +31-20-525 74 80 mbaan@science.uva.nl
Portugal - Prof. Teresa Lago +351-22-089 833 mtlago@astro.up.pt
Spain - Dr. Miguel Mas-Hesse +34918131196 mm@laeff.inta.es
Sweden - Dr. Jesper Sollerman +46-8-55 37 85 54 jesper@astro.su.se
Switzerland - Dr. Martin Steinacher +41-31-324 23 82 martin.steinacher@sbf.admin.ch
United Kingdom - Mr. Peter Barratt +44-1793-44 20 25 peter.barratt@stfc.ac.uk

ESO 26/07 - Matter Flashed at Ultra Speed


ESO 26/07 - Science Release

12 June 2007
For Immediate Release

Matter Flashed at Ultra Speed

Robotic Telescope Measures Speed of Material Ejected in Cosmic Death

Using a robotic telescope at the ESO La Silla Observatory, astronomers have for the first time measured the velocity of the explosions known as gamma-ray bursts. The material is travelling at the extraordinary speed of more than 99.999% of the velocity of light, the maximum speed limit in the Universe.

ESO PR Photo 26a/07
ESO PR Photo 26a/07

The REM Telescope

" With the development of fast-slewing ground-based telescopes such as the 0.6-m REM telescope at ESO La Silla, we can now study in great detail the very first moments following these cosmic catastrophes," says Emilio Molinari, leader of the team that made the discovery.

Gamma-ray bursts (GRBs) are powerful explosions occurring in distant galaxies, that often signal the death of stars. They are so bright that, for a brief moment, they almost rival the whole Universe in luminosity. They last, however, for only a very short time, from less than a second to a few minutes. Astronomers have long known that, in order to emit such incredible power in so little time, the exploding material must be moving at a speed comparable with that of light, namely 300 000 km per second. By studying the temporal evolution of the burst luminosity, it has now been possible for the first time to precisely measure this velocity.

Gamma-ray bursts, which are unseen by our eyes, are discovered by artificial satellites. The collision of the gamma-ray burst jets into the surrounding gas generates an afterglow visible in the optical and near-infrared that can radiate for several weeks. An array of robotic telescopes were built on the ground, ready to catch this vanishing emission (see e.g. ESO 17/07). On 18 April and 7 June 2006, the NASA/PPARC/ASI Swift satellite detected two bright gamma-ray bursts. In a matter of a few seconds, their position was transmitted to the ground, and the REM telescope began automatically to observe the two GRB fields, detecting the near-infrared afterglows, and monitored the evolution of their luminosity as a function of time (the light curve). The small size of the telescope is compensated by its rapidity of slewing, which allowed astronomers to begin observations very soon after each GRB's detection (39 and 41 seconds after the alert, respectively), and to monitor the very early stages of their light curve.

The two gamma-ray bursts were located 9.3 and 11.5 billion light-years away, respectively.

ESO PR Photo 26b/07
ESO PR Photo 26b/07

Light Curve of a Gamma-ray Burst

For both events, the afterglow light curve initially rose, then reached a peak, and eventually started to decline, as is typical of GRB afterglows. The peak is, however, only rarely detected. Its determination is very important, since it allows a direct measurement of the expansion velocity of the explosion of the material. For both bursts, the velocity turns out to be very close to the speed of light, precisely 99.9997% of this value. Scientists use a special number, called the Lorentz factor, to express these high velocities. Objects moving much slower than light have a Lorentz factor of about 1, while for the two GRBs it is about 400.

" Matter is thus moving with a speed that is only different from that of light by three parts in a million," says Stefano Covino, co-author of the study. " While single particles in the Universe can be accelerated to still larger velocities - i.e. much larger Lorentz factors - one has to realise that in the present cases, it is the equivalent of about 200 times the mass of the Earth that acquired this incredible speed. "

" You certainly wouldn't like to be in the way," adds team member Susanna Vergani.

The measurement of the Lorentz factor is an important step in understanding gamma-ray burst explosions. This is in fact one of the fundamental parameters of the theory which tries to explain these gigantic explosions, and up to now it was only poorly determined.

" The next question is which kind of 'engine' can accelerate matter to such enormous speeds," says Covino.

More Information

"REM observations of GRB060418 and GRB060607A: the onset of the afterglow and the initial fireball Lorentz factor determination", by E. Molinari, S. D. Vergani, D. Malesani, S. Covino, et al. The paper is available at http://dx.doi.org/10.1051/0004-6361:20077388 (A&A, 469, L13-L16, 2007).
The REM team is formed by G. Chincarini, E. Molinari, F.M. Zerbi, L.A. Antonelli, S. Covino, P. Conconi, L. Nicastro, E. Palazzi, M. Stefanon, V. Testa, G. Tosti, F. Vitali, A. Monfardini, F. D'Alessio, P. D'Avanzo, D. Fugazza, G. Malaspina, S. Piranomonte, S.D. Vergani, P.A. Ward, S. Campana, P. Goldoni, D. Guetta, D. Malesani, N. Masetti, E.J.A. Meurs, L. Norci, E. Pian, A. Fernandez-Soto, L. Stella, G. Tagliaferri, G. Ihle, L. Gonzalez, A. Pizarro, P. Sinclair, and J. Valenzuela.

Notes

Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. They come in two different flavours, long and short ones. Over the past few years, international efforts have convincingly shown that long gamma-ray bursts are linked with the ultimate explosion of massive stars (hypernovae; see e.g. ESO PR 16/03) while the short ones most likely originate from the violent collision of neutron stars and/or black holes (see e.g. ESO PR 26/05 and 32/05). Irrespective of the original source of the GRB energy, the injection of so much energy into a confined volume will cause a fireball to form.
Gamma-ray photons have nearly a million times more energy than the 'visual' photons the eye can see.
Strictly speaking, the Lorentz factor is the ratio between the total and rest-mass energy of the fireball.
REM (Rapid Eye Mount) is a small (60 cm mirror diameter) rapid reaction automatic telescope dedicated to monitor the prompt afterglow of Gamma Ray Burst events. It is located at the ESO La Silla Observatory in Chile. For more information, see http://www.rem.inaf.it and Chincarini et al. ( ESO Messenger, 113, 40, 2003).

Contacts

Emilio Molinari
INAF / Osservatorio Astronomico di Brera
Merate, Italy
Phone: +39 039 9991158
Email: emilio.molinari (at) brera.inaf.it


National contacts for the media:
Belgium - Dr. Rodrigo Alvarez +32-2-474 70 50 rodrigo.alvarez@oma.be
Czech Republic - Pavel Suchan +420 267 103 040 suchan@astro.cz
Finland - Ms. Tiina Raivo +358 9 7748 8369 tiina.raivo@aka.fi
Denmark - Dr. Michael Linden-Vørnle +45-33-18 19 97 mykal@tycho.dk
France - Dr. Daniel Kunth +33-1-44 32 80 85 kunth@iap.fr
Germany - Dr. Jakob Staude +49-6221-528229 staude@mpia.de
Italy - Dr. Leopoldo Benacchio +39-347-230 26 51 benacchio@inaf.it
The Netherlands - Ms. Marieke Baan +31-20-525 74 80 mbaan@science.uva.nl
Portugal - Prof. Teresa Lago +351-22-089 833 mtlago@astro.up.pt
Spain - Dr. Miguel Mas-Hesse +34918131196 mm@laeff.inta.es
Sweden - Dr. Jesper Sollerman +46-8-55 37 85 54 jesper@astro.su.se
Switzerland - Dr. Martin Steinacher +41-31-324 23 82 martin.steinacher@sbf.admin.ch
United Kingdom - Mr. Peter Barratt +44-1793-44 20 25 peter.barratt@stfc.ac.uk

ESO 28/07 - Back on Track

ESO 24/07 - A Brown Dwarf Joins the Jet-Set


ESO 24/07 - Science Release

23 May 2007
For Immediate Release

A Brown Dwarf Joins the Jet-Set

VLT Finds Smallest Galactic Object with Jets

Jets of matter have been discovered around a very low mass 'failed star', mimicking a process seen in young stars. This suggests that these 'brown dwarfs' form in a similar manner to normal stars but also that outflows are driven out by objects as massive as hundreds of millions of solar masses down to Jupiter-sized objects.

The brown dwarf with the name 2MASS1207-3932 is full of surprises [1]. Its companion, a 5 Jupiter-mass giant, was the first confirmed exoplanet for which astronomers could obtain an image (see ESO 23/04 and 12/05), thereby opening a new field of research - the direct detection of alien worlds. It was then later found (see ESO 19/06) that the brown dwarf has a disc surrounding it, not unlike very young stars.

ESO PR Photo 24/07
ESO PR Photo 24/07

Jets from a Brown Dwarf
(Artist's Impression)

Now, astronomers using ESO's Very Large Telescope (VLT) have found that the young brown dwarf is also spewing jets, a behaviour again quite similar to young stars.

The mass of the brown dwarf is only 24 Jupiter-masses. Hence, it is by far the smallest object known to drive an outflow. "This leads us to the tantalizing prospect that young giant planets could also be associated with outflows," says Emma Whelan, the lead-author of the paper reporting the results.

The outflows were discovered using an amazing technique known as spectro-astrometry, based on high resolution spectra taken with UVES on the VLT. Such a technique was required due to the difficulty of the task. While in normal young stars - known as T-Tauri stars for the prototype of their class - the jets are large and bright enough to be seen directly, this is not the case around brown dwarfs: the length scale of the jets, recovered with spectro-astrometry is only about 0.1 arcsecond long, that is, the size of a two Euro coin seen from 40 km away.

The jets stretch about 1 billion kilometres and the material is rushing away from the brown dwarf with a speed of a few kilometres per second.

The astronomers had to rely on the power of the VLT because the observed emission is extremely faint and only UVES on the VLT could provide both the sensitivity and the spectral resolution they required.

"Discoveries like these are purely reliant on excellent telescopes and instruments, such as the VLT," says Whelan. "Our result also highlights the incredible level of quality which is available today to astronomers: the first telescopes built by Galileo were used to observe the moons of Jupiter. Today, the largest ground-based telescopes can be used to observe a Jupiter size object at a distance of 200 light-years and find it has outflows!"

Using the same technique and the same telescope, the team had previously discovered outflows in another young brown dwarf. The new discovery sets a record for the lowest mass object in which jets are seen [2].

Outflows are ubiquitous in the Universe, as they are observed rushing away from the active nuclei of galaxies - AGNs - but also emerging from young stars. The present observations show they even arise in still lower mass objects. The outflow mechanism is thus very robust over an enormous range of masses, from several tens of millions of solar mass (for AGNs) down to a few tens of Jupiter masses (for brown dwarfs).

More Information

These results were reported in a Letter to the Editor in the Astrophysical Journal (vol. 659, p. L45): "Discovery of a Bipolar Outflow from 2MASSW J1207334-393254 a 24 MJup Brown Dwarf", by E.T. Whelan et al.
The team is composed of Emma Whelan and Tom Ray (Dublin Institute for Advanced Studies, Ireland), Ray Jayawardhana (University of Toronto, Canada), Francesca Bacciotti, Antonella Natta and Sofia Randich (Osservatorio Astrofisico di Arcetri, Italy), Leonardo Testi (ESO), and Subu Mohanty (Harvard-Smithsonian CfA, USA).

Notes

[1]: Brown dwarfs are objects whose masses are below those of normal stars - the borderline is believed to be about 8% of the mass of our Sun - but larger than those of planets. Unlike normal stars, brown dwarfs are unable to sustain stable nuclear fusion of hydrogen.

[2]: The brown dwarf 2MASS1207-3932 belongs to the TW Hydrae Association and is therefore about 8 million years old. Albeit this is relatively young, this also implies that this brown dwarf is one of the oldest Galactic objects with a resolved jet, highlighting the fact that outflows can persist for a relatively long time.

Technical information: Spectro-astrometry is simply Gaussian fitting of the spatial profile of the continuum and emission line regions of a spectrum in order to very accurately measure positions. In this way spatial information is recovered beyond the limitations of the seeing of an observation. For example spectro-astrometry has been primarily used to investigate binarity in sources where the binary separation is far less than the seeing and to confirm outflow activity where the line emission tracing the outflow originates at a distance again much smaller than the seeing and therefore appears confined to the source. The first step is to measure the continuum centroid i.e. the source position. The spatial profile of the continuum is extracted at many positions along the dispersion axis. Each extracted profile is fitted with a Gaussian to measure the centroid position of the continuum emission and the result is a position spectrum of the continuum. This map of the continuum position is easily corrected for curvature or tilting in the spectrum. Next the continuum is removed and the position of a pure emission line region is measured (again with Gaussian fitting) with respect to the continuum position. The presence of the continuum will tend to drag the position of an emission line region back towards the source so it must be removed. The accuracy with which one can measure positions with spectro-astrometry is strongly dependent on the signal to noise of the observation and is given by sigma=seeing/[ 2.3548(sqrt{Np})] where Np is the number of detected photons. For example, for a seeing of 1 arcsecond and a value of Np of 10,000, positions can be recovered to an accuracy of less than 5 milliarcseconds. The forbidden emission lines found in the spectra of some young brown dwarfs were a strong indication of outflow activity. However the regions were not extended and therefore that they originated in an outflow could not be directly confirmed. Using spectro-astrometry the astronomers were able to show that the line regions were shifted by small amounts with respect to the brown dwarf continuum (shifts were small relative to the seeing) and therefore were indeed tracing an outflow. Please see http://www.nature.com/nature/journal/v435/n7042/suppinfo/nature03598.html for a more in depth discussion of the spectro-astrometric technique.


Contact

Emma Whelan
School of Cosmic Physics
Dublin Institute for Advanced Studies, Ireland
Phone: +353-1-6621333
Email: ewhelan (at) cp.dias.ie


National contacts for the media:
Belgium - Dr. Rodrigo Alvarez +32-2-474 70 50 rodrigo.alvarez@oma.be
Czech Republic - Pavel Suchan +420 267 103 040 suchan@astro.cz
Finland - Ms. Tiina Raivo +358 9 7748 8369 tiina.raivo@aka.fi
Denmark - Dr. Michael Linden-Vørnle +45-33-18 19 97 mykal@tycho.dk
France - Dr. Daniel Kunth +33-1-44 32 80 85 kunth@iap.fr
Germany - Dr. Jakob Staude +49-6221-528229 staude@mpia.de
Italy - Dr. Leopoldo Benacchio +39-347-230 26 51 benacchio@inaf.it
The Netherlands - Ms. Marieke Baan +31-20-525 74 80 mbaan@science.uva.nl
Portugal - Prof. Teresa Lago +351-22-089 833 mtlago@astro.up.pt
Spain - Dr. Miguel Mas-Hesse +34918131196 mm@laeff.inta.es
Sweden - Dr. Jesper Sollerman +46-8-55 37 85 54 jesper@astro.su.se
Switzerland - Dr. Martin Steinacher +41-31-324 23 82 martin.steinacher@sbf.admin.ch
United Kingdom - Mr. Peter Barratt +44-1793-44 20 25 peter.barratt@stfc.ac.uk

jueves, mayo 31, 2007

A Galactic Fossil

Images Page

ESO 23/07 - Science Release

10 May 2007
For Immediate Release

Star is Found to be 13.2 Billion Years Old

How old are the oldest stars? Using ESO's VLT, astronomers recently measured the age of a star located in our Galaxy. The star, a real fossil, is found to be 13.2 billion years old, not very far from the 13.7 billion years age of the Universe. The star, HE 1523-0901, was clearly born at the dawn of time.

"Surprisingly, it is very hard to pin down the age of a star", the lead author of the paper reporting the results, Anna Frebel, explains. "This requires measuring very precisely the abundance of the radioactive elements thorium or uranium, a feat only the largest telescopes such as ESO's VLT can achieve."

ESO PR Photo 23a/07
ESO PR Photo 23a/07

The 'Cosmic Clock'

This technique is analogous to the carbon-14 dating method that has been so successful in archaeology over time spans of up to a few tens of thousands of years. In astronomy, however, this technique must obviously be applied to vastly longer timescales.

For the method to work well, the right choice of radioactive isotope is critical. Unlike other, stable elements that formed at the same time, the abundance of a radioactive (unstable) isotope decreases all the time. The faster the decay, the less there will be left of the radioactive isotope after a certain time, so the greater will be the abundance difference when compared to a stable isotope, and the more accurate is the resulting age.

Yet, for the clock to remain useful, the radioactive element must not decay too fast - there must still be enough left of it to allow an accurate measurement, even after several billion years.

"Actual age measurements are restricted to the very rare objects that display huge amounts of the radioactive elements thorium or uranium," says Norbert Christlieb, co-author of the report.

ESO PR Photo 23b/07
ESO PR Photo 23b/07

Uranium Line in the Spectrum
of an Old Star

Large amounts of these elements have been found in the star HE 1523-0901, an old, relatively bright star that was discovered within the Hamburg/ESO survey [1]. The star was then observed with UVES on the Very Large Telescope (VLT) for a total of 7.5 hours.

A high quality spectrum was obtained that could never have been achieved without the combination of the large collecting power Kueyen, one of the individual 8.2-m Unit Telescopes of the VLT, and the extremely good sensitivity of UVES in the ultraviolet spectral region, where the lines from the elements are observed.

For the first time, the age dating involved both radioactive elements in combination with the three other neutron-capture elements europium, osmium, and iridium.


"Until now, it has not been possible to measure more than a single cosmic clock for a star. Now, however, we have managed to make six measurements in this one star", says Frebel.

Ever since the star was born, these "clocks" have ticked away over the eons, unaffected by the turbulent history of the Milky Way. They now read 13.2 billion years.

The Universe being 13.7 billion years old, this star clearly formed very early in the life of our own Galaxy, which must also formed very soon after the Big Bang.

More Information

This research is reported in a paper published in the 10 May issue of the Astrophysical Journal ("Discovery of HE 1523-0901, a Strongly r-Process Enhanced Metal-Poor Star with Detected Uranium", by A. Frebel et al.).
The team includes Anna Frebel (McDonald Observatory, Texas) and John E. Norris (The Australian National University), Norbert Christlieb (Uppsala University, Sweden, and Hamburg Observatory, Germany), Christopher Thom (University of Chicago, USA, and Swinburne University of Technlogy, Australia), Timothy C. Beers (Michigan State University, USA), Jaehyon Rhee (Center for Space Astrophysics, Yonsei University, Korea, and Caltech, USA).

Note

[1]: The Hamburg/ESO sky survey is a collaborative project of the Hamburger Sternwarte and ESO to provide spectral information for half of the southern sky using photographic plates taken with the now retired ESO-Schmidt telescope. These plates were digitized at Hamburger Sternwarte.

Contact

Anna Frebel
McDonald Observatory, Texas
Phone: +1 512-461-7907
Email: anna (at) astro.as.utexas.edu

Norbert Christlieb
Department of Astronomy and Space Physics, Uppsala University, Sweden
Phone: +46-18-471-5982
Mobile: +49-176-67 67 14 08
E-mail: norbert (at) astro.uu.se

National contacts for the media:
Belgium - Dr. Rodrigo Alvarez +32-2-474 70 50 rodrigo.alvarez@oma.be
Czech Republic - Pavel Suchan +420 267 103 040 suchan@astro.cz
Finland - Ms. Tiina Raivo +358 9 7748 8369 tiina.raivo@aka.fi
Denmark - Dr. Michael Linden-Vørnle +45-33-18 19 97 mykal@tycho.dk
France - Dr. Daniel Kunth +33-1-44 32 80 85 kunth@iap.fr
Germany - Dr. Jakob Staude +49-6221-528229 staude@mpia.de
Italy - Dr. Leopoldo Benacchio +39-347-230 26 51 benacchio@inaf.it
The Netherlands - Ms. Marieke Baan +31-20-525 74 80 mbaan@science.uva.nl
Portugal - Prof. Teresa Lago +351-22-089 833 mtlago@astro.up.pt
Spain - Dr. Miguel Mas-Hesse +34918131196 mm@laeff.inta.es
Sweden - Dr. Jesper Sollerman +46-8-55 37 85 54 jesper@astro.su.se
Switzerland - Dr. Martin Steinacher +41-31-324 23 82 martin.steinacher@sbf.admin.ch
United Kingdom - Mr. Peter Barratt +44-1793-44 20 25 peter.barratt@stfc.ac.uk

 

viernes, mayo 04, 2007

Astronomers Find First Earth-like Planet in Habitable Zone

ESO 22/07 - Science Release

25 April 2007
For Immediate Release

The Dwarf Carried Other Worlds Too!

Astronomers have discovered the most Earth-like planet outside our Solar System to date, an exoplanet with a radius only 50% larger than the Earth and capable of having liquid water. Using the ESO 3.6-m telescope, a team of Swiss, French and Portuguese scientists discovered a super-Earth about 5 times the mass of the Earth that orbits a red dwarf, already known to harbour a Neptune-mass planet. The astronomers have also strong evidence for the presence of a third planet with a mass about 8 Earth masses.


ESO PR Photo 22a/07

The Planetary System Around Gliese 581

This exoplanet - as astronomers call planets around a star other than the Sun - is the smallest ever found up to now [1] and it completes a full orbit in 13 days. It is 14 times closer to its star than the Earth is from the Sun. However, given that its host star, the red dwarf Gliese 581 [2], is smaller and colder than the Sun - and thus less luminous - the planet nevertheless lies in the habitable zone, the region around a star where water could be liquid! The planet's name is Gliese 581 c.

"We have estimated that the mean temperature of this super-Earth lies between 0 and 40 degrees Celsius, and water would thus be liquid," explains Stéphane Udry, from the Geneva Observatory (Switzerland) and lead-author of the paper reporting the result. "Moreover, its radius should be only 1.5 times the Earth's radius, and models predict that the planet should be either rocky - like our Earth - or fully covered with oceans," he adds.


ESO PR Photo 22c/07

The star Gliese 581

"Liquid water is critical to life as we know it," avows Xavier Delfosse, a member of the team from Grenoble University (France). "Because of its temperature and relative proximity, this planet will most probably be a very important target of the future space missions dedicated to the search for extra-terrestrial life. On the treasure map of the Universe, one would be tempted to mark this planet with an X."

The host star, Gliese 581, is among the 100 closest stars to us, located only 20.5 light-years away in the constellation Libra ("the Scales"). It has a mass of only one third the mass of the Sun. Such red dwarfs are intrinsically at least 50 times fainter than the Sun and are the most common stars in our Galaxy: among the 100 closest stars to the Sun, 80 belong to this class.

"Red dwarfs are ideal targets for the search for low-mass planets where water could be liquid. Because such dwarfs emit less light, the habitable zone is much closer to them than it is around the Sun," emphasizes Xavier Bonfils, a co-worker from Lisbon University. Planets lying in this zone are then more easily detected with the radial-velocity method [3], the most successful in detecting exoplanets.


ESO PR Photo 22d/07

Velocity Variations of Gl 581

Two years ago, the same team of astronomers already found a planet around Gliese 581 (see ESO 30/05). With a mass of 15 Earth-masses, i.e. similar to that of Neptune, it orbits its host star in 5.4 days. At the time, the astronomers had already seen hints of another planet. They therefore obtained a new set of measurements and found the new super-Earth, but also clear indications for another one, an 8 Earth-mass planet completing an orbit in 84 days. The planetary system surrounding Gliese 581 contains thus no fewer than 3 planets of 15 Earth masses or less, and as such is a quite remarkable system.

The discovery was made thanks to HARPS (High Accuracy Radial Velocity for Planetary Searcher), perhaps the most precise spectrograph in the world. Located on the ESO 3.6-m telescope at La Silla, Chile, HARPS is able to measure velocities with a precision better than one metre per second (or 3.6 km/h)! HARPS is one of the most successful instruments for detecting exoplanets and holds already several recent records, including the discovery of another 'Trio of Neptunes' (ESO 18/06, see also ESO 22/04).


ESO PR Video 22/07
Watch the video!

The detected velocity variations are between 2 and 3 metres per second, corresponding to about 9 km/h! That's the speed of a person walking briskly. Such tiny signals could not have been distinguished from 'simple noise' by most of today's available spectrographs.

"HARPS is a unique planet hunting machine," says Michel Mayor, from Geneva Observatory, and HARPS Principal Investigator. "Given the incredible precision of HARPS, we have focused our effort on low-mass planets. And we can say without doubt that HARPS has been very successful: out of the 13 known planets with a mass below 20 Earth masses, 11 were discovered with HARPS!"

HARPS is also very efficient in finding planetary systems, where tiny signals have to be uncovered. The two systems known to have three low mass planets - HD 69830 and Gl 581 - were discovered by HARPS.

"And we are confident that, given the results obtained so far, finding a planet with the mass of the Earth around a red dwarf is within reach," affirms Mayor.


More Information

This research is reported in a paper submitted as a Letter to the Editor of Astronomy and Astrophysics ("The HARPS search for southern extra-solar planets : XI. An habitable super-Earth (5 MEarth) in a 3-planet system", by S. Udry et al.) The paper is available from http://obswww.unige.ch/~udry/udry_preprint.pdf.
The team is composed of Stéphane Udry, Michel Mayor, Christophe Lovis, Francesco Pepe, and Didier Queloz (Geneva Observatory, Switzerland), Xavier Bonfils (Lisbonne Observatory, Portugal), Xavier Delfosse, Thierry Forveille, and C.Perrier (LAOG, Grenoble, France), François Bouchy (Institut d'Astrophysique de Paris, France), and Jean-Luc Bertaux (Service d'Aéronomie du CNRS, France)

Notes

[1]: Using the radial velocity method, astronomers can only obtain a minimum mass (as it is multiplied by the sine of the inclination of the orbital plane to the line of sight, which is unknown). From a statistical point of view, this is however often close to the real mass of the system. Two other systems have a mass close to this. The icy planet around OGLE-2005-BLG-390L, discovered by microlensing with a network of telescopes including one at La Silla (ESO 03/06), has a (real) mass of 5.5 Earth masses. It, however, orbits much farther from its small host star than the present one and is hence much colder. The other is one of the planets surrounding the star Gliese 876. It has a minimum mass of 5.89 Earth masses (and a probable real mass of 7.53 Earth masses) and completes an orbit in less than 2 days, making it too hot for liquid water to be present.

[2]: Gl 581, or Gliese 581, is the 581th entry in the Gliese Catalogue, which lists all known stars within 25 parsecs (81.5 light years) of the Sun. It was originally compiled by Gliese and published in 1969, and later updated by Gliese and Jahreiss in 1991.

[3]: This fundamental observational method is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows deducing the planet's orbit, in particular the period and the distance from the star, as well as a minimum mass.


Contact

Stéphane Udry, Michel Mayor
Observatory of Geneva University, Switzerland
Phone: +41 22 379 22 00
Email: Stephane.Udry (at) obs.unige.ch, Michel.Mayor (at) obs.unige.ch

Xavier Delfosse, Thierry Forveille
LAOG, France
Phone: +33 476 51 42 06
Email: Xavier.Delfosse (at) obs.ujf-grenoble.fr, Thierry.Forveille (at) obs.ujf-grenoble.fr

Xavier Bonfils
Lisbonne Observatory, Portugal
Phone: +351 21 361 67 43
Email: xavier.bonfils (at) oal.ul.pt


National contacts for the media:
Belgium - Dr. Rodrigo Alvarez +32-2-474 70 50 rodrigo.alvarez@oma.be
Finland - Ms. Tiina Raivo +358 9 7748 8369 tiina.raivo@aka.fi
Denmark - Dr. Michael Linden-Vørnle +45-33-18 19 97 mykal@tycho.dk
France - Dr. Daniel Kunth +33-1-44 32 80 85 kunth@iap.fr
Germany - Dr. Jakob Staude +49-6221-528229 staude@mpia.de
Italy - Dr. Leopoldo Benacchio +39-347-230 26 51 benacchio@inaf.it
The Netherlands - Ms. Marieke Baan +31-20-525 74 80 mbaan@science.uva.nl
Portugal - Prof. Teresa Lago +351-22-089 833 mtlago@astro.up.pt
Spain - Dr. Miguel Mas-Hesse +34918131196 mm@laeff.inta.es
Sweden - Dr. Jesper Sollerman +46-8-55 37 85 54 jesper@astro.su.se
Switzerland - Dr. Martin Steinacher +41-31-324 23 82 martin.steinacher@sbf.admin.ch
United Kingdom - Mr. Peter Barratt +44-1793-44 20 25 Peter.Barratt@pparc.ac.uk